jueves, 25 de febrero de 2016

MATERIALES SINTÉTICOS

Hola bloggers!
La entrada de hoy tratara sobre los materiales sintéticos en la historia, veremos su evolución y su importancia industrial.
Esto nos sera muy útil puesto que en el coche, cada vez mas piezas son de materiales plásticos o sintéticos.
Esta entrada irá enfocada a 4 puntos básicos:

-¿Qué es un material sintético?
-¿A qué nos referimos cuando hablamos industrialmente de materiales sintéticos?
-Hitos históricos que marcan la vida de los materiales sintéticos.
-Materias primas para la producción de materiales sintéticos.

Dicho esto empezamos a hablar de ellos.


¿QUÉ ES UN MATERIAL SINTÉTICO?

Un material sintético es aquel producto de la "síntesis química", que consiste en el proceso de obtención de compuestos químicos partiendo de sustancias más simples.

Por ejemplo el proceso permite obtener productos que no se encuentran en la naturaleza, como los plásticos.

En el ámbito de la informática, los materiales sintéticos son fundamentales para la fabricación tanto de los componentes de una computadora (chips y demás componentes electrónicos) como de su estructura física de bajo coste.

Características de estos materiales:
-Están fabricados por el hombre a partir de materiales artificiales.
-No se encuentran en la naturaleza ni tampoco los materiales que los componen.
-El ejemplo más característico lo constituyen los plásticos, como la baquelita, que se obtiene a partir de dos materiales artificiales: formol y fenol.
-Durante los últimos cien años se han descubierto multitud de materiales, así como nuevos métodos de fabricación (p.e. la vulcanización).


Sintetizar es el proceso industrial por el cual se consigue crear piezas que son complicadas de obtener por otros procedimientos como el forjado o el mecanizado. Consiste en reducir el material base a polvo para luego comprimirlo en un molde a una determinada presión y calentarlo a una temperatura controlada.

La fuerza impulsora de la deformación elástica es un parámetro termodinámico llamado entropía, que mide el grado de desorden del sistema. La entroia aumenta al aumentar el desorden. Al aplicar un esfuerzo a un elastómero las cadenas se alargan y alinean: el sistema se ordena. 

A partir de este estado, la entropía aumenta al volver las cadenas a su original enmarañamiento.

Este efecto en trópico origina dos fenómenos. En primer lugar, al aplicar un esfuerzo al elastómero, este aumenta su temperatura; en segundo lugar, el modulo de elasticidad aumenta al incrementar la temperatura, comportamiento contrario al de otros materiales.


Resultado de imagen de materiales sinteticos   Resultado de imagen de materiales sinteticos


¿A QUÉ NOS REFERIMOS CUANDO HABLAMOS INDUSTRIALMENTE DE MATERIALES SINTÉTICOS?


Industrialmente, cuando hablamos de materiales sintéticos nos referimos a tres grandes grupos:

-TERMOPLÁSTICOS
-TERMOESTABLES
-ELASTÓMEROS

A continuación hablaremos un poco de cada uno:

TERMOPLÁSTICOS:

Un termoplástico es un plástico que, a temperaturas relativamente altas, se vuelve deformable o flexible, se derrite cuando se calienta y se endurece en un estado de transición vítrea cuando se enfría lo suficiente. La mayor parte de los termoplásticos son polímeros de alto peso molecular, los cuales poseen cadenas asociadas por medio de fuerzas de Van der Waals débiles (polietileno), fuertes interacciones dipolo-dipolo y enlace de hidrógeno, o incluso anillos aromáticos apilados (poliestireno). 
Sus propiedades físicas cambian gradualmente si se funden y se moldean varias veces (historial térmico), generalmente disminuyendo estas propiedades al debilitar los enlaces. Los más usados son el polietileno (PE), el polipropileno (PP), el polibutileno (PB), el poliestireno (PS), el polimetilmetacrilato (PMMA), el policloruro de vinilo (PVC), el politereftalato de etileno (PET), el teflón (o politetrafluoroetileno, PTFE) y el nailon (un tipo de poliamida).
Muchos de los termoplásticos conocidos pueden ser resultado de la suma de varios polímeros, como es el caso del vinilo, que es una mezcla de polietileno y polipropileno.
Cuando se enfrían, partiendo del estado líquido y dependiendo de la temperaturas a la cual se expongan durante el proceso de solidificación (aumento o disminución), podrán formarse estructuras sólidas cristalinas o no cristalinas.
Este tipo de polímero está caracterizado por su estructura, está formado por cadenas de hidrocarburos cómo la mayoría de los polímeros, específicamente encontramos cadenas de tipo lineal o ramificadas.


TERMOESTABLES:

Los polímeros termo-estables son polímeros infusibles e insolubles. La razón de tal comportamiento estriba en que las cadenas de estos materiales forman una red tridimensional espacial, entrelazándose con fuertes enlaces equivalentes. La estructura así formada es un conglomerado de cadenas entrelazadas dando la apariencia y funcionando como una macromolécula, que al elevarse la temperatura de ésta, simplemente las cadenas se compactan más, haciendo al polímero más resistente hasta el punto en que se degrada.
Las macromoléculas son moléculas que tienen una masa molecular elevada, formadas por un gran número de átomos. Generalmente se pueden describir como la repetición de una o unas pocas unidades mínimas o monómeros, formando los polímeros.
El proceso de polimerización se suele dar en dos etapas: en la primera se produce la polimerización parcial, formando cadenas lineales, mientras que en la segunda el proceso se completa entrelazando las moléculas aplicando calor y presión durante el proceso. La primera etapa se suele llevar a cabo en la planta química, mientras que la segunda se realiza en la planta de fabricación de la pieza terminada. También pueden obtenerse plásticos termoestables a partir de dos resinas líquidas, produciéndose la reacción de entrelazamiento de las cadenas al ser mezcladas (comúnmente con un catalizador y un acelerante).
La reacción de curado es irreversible, de forma que el plástico resultante no puede ser reciclado, ya que si se incrementa la temperatura el polímero no funde, sino que alcanza su temperatura de degradación. Por establecer un símil por todos conocido, es como cocer un huevo; si volvemos a elevar la temperatura una vez cocido y enfriado, el huevo no sufre ninguna transformación, y si elevamos la temperatura demasiado el huevo se quema.
Los plásticos termoestables poseen algunas propiedades ventajosas respecto a los termoplásticos. Por ejemplo, mejor resistencia al impacto, a los solventes, a la permeación de gases y a las temperaturas extremas. Entre las desventajas se encuentran, generalmente, la dificultad de procesamiento, la necesidad del curado, el carácter quebradizo del material (frágil) y el no presentar reforzamiento al someterlo a tensión.



ELASTÓMEROS:


Los elastómeros son aquellos tipos de compuestos que están incluidos no metales en ellos, que muestran un comportamiento elástico. El término, que proviene de polímero elástico, es a veces intercambiable con el término goma, que es más adecuado para referirse a vulcanizados. Cada uno de los monómeros que se unen entre sí para formar el polímero está normalmente compuesto de carbono, hidrógeno, oxígeno o silicio. Los elastómeros son polímeros amorfos que se encuentran sobre su temperatura de transición vítrea o Tg, de ahí esa considerable capacidad de deformación. A temperatura ambiente las gomas son relativamente blandas (E~3MPa) y deformables. Se usan principalmente para cierres herméticos, adhesivos y partes flexibles. Comenzaron a utilizarse a finales del siglo XIX, dando lugar a aplicaciones hasta entonces imposibles (como los neumáticos de automóvil).
Los elastómeros suelen ser normalmente polímeros termoestables pero pueden ser también termoplásticos. Las largas cadenas poliméricas enlazan durante el curado. La estructura molecular de los elastómeros puede ser imaginada como una estructura de "espaguetis con albóndigas", en dónde las albóndigas serían los enlaces. La elasticidad proviene de la habilidad de las cadenas para cambiar su posición por sí mismas y así distribuir una cierta tensión aplicada. El enlace covalente asegura que el elastómero retornará a su posición original una vez deje de aplicarse la tensión. Como resultado de esa extrema flexibilidad, los elastómeros pueden alargarse de un 5 % a un 700 %, dependiendo del material en concreto. Sin los enlaces o con pocos de ellos, la tensión aplicada puede provocar una deformación permanente.
Los elastómeros que han sido enfriados llevándolos a una fase vítrea o cristalina tendrán menos movilidad en las cadenas, y consecuentemente menos elasticidad que aquellos manipulados a temperaturas superiores a la temperatura de transición vítrea del polímero.
Es también posible para un polímero exhibir elasticidad que no es debida a los enlaces covalentes, sino a razones termodinámicas.

HITOS HISTÓRICOS QUE MARCARAN LA VIDA DE LOS MATERIALES SINTÉTICOS

El desarrollo del plástico surge, cuando se descubrió que las resinas naturales podían emplearse para elaborar objetos de uso práctico. Estas resinas como el betún, la gutapercha, la goma laca y el ámbar, son extraídas de ciertos árboles, y se tienen referencias de que ya se utilizaban en Egipto, Babilonia, la India, Grecia y China. En América se conocía otro material utilizado por sus habitantes antes de la llegada de Colón, conocido como hule o caucho.

El hule y otras resinas presentaban algunos inconvenientes y, por lo tanto, su aplicación resultaba limitada. Sin embargo, después de muchos años de trabajos e investigaciones se llegaron a obtener resinas semisintéticas, mediante tratamientos químicos y físicos de resinas naturales.

Se puede decir que la primera resina semisintética fue el hule vulcanizado, obtenida por Charles Goodyear en 1839 al hacer reaccionar azufre con la resina natural caliente. El producto obtenido resultó ser muy resistente a los cambios de temperatura y a los esfuerzos mecánicos.

A mediados del siglo XIX, el inventor inglés Alexander Parkes obtuvo accidentalmente nitrocelulosa, mediante la reacción de la celulosa con ácido nítrico y sulfúrico, y la llamó"Parkesina", que con aceite de ricino se podía moldear. Sin embargo debido a su flamabilidad, no tuvo éxito comercial.

Alrededor de 1860, en los Estados Unidos surgió el primer plástico de importancia comercial gracias a un concurso para encontrar un material que sustituyen al marfil en la fabricación de las bolas de billar (en esa época se utilizaban tanto marfil, que se sacrificaba 12,000 elefantes anualmente para cubrir la demanda). Casualmente los hermanos Hyatt trabajaban con el algodón tratado con ácido nítrico, siendo un producto muy peligroso que podía utilizarse como explosivo.
Aprovechando la idea de Parkes, sustituyeron el aceito de ricino por alcanfor y al producto obtenido le llamaron "Celuloide", el cual hizo posible la producción de varios artículos como peines, bolas de billar y películas fotográficas.

Otro plástico semisintética que tuvo buena aceptación comercial fue el que desarrollaron Krische y Spitteler en 1897, debido a la demanda de pizarrones blanco en las escuelas alemanas. Este material se fabricó a base de Caseína, una proteína extraída de la leche al hacerla reaccionar con formaldehído. Su principal aplicación fue la elaboración de botones.

En 1899 Leo H. Baeklan, descubrió una resina considerada totalmente sintética, "la baquelita", la cual se obtienen mediante la reacción del fenol con formaldehído.
Aunque en el siglo XIX se observó en diversos laboratorios que, por acción de la luz o del calor, muchas sustancias simples,
gaseosas o líquidas se convertían en compuestos viscosos o incluso sólidos, nunca se imaginó el alcance que tendrían estos cambios como nuevas vías de obtención de plásticos.

El siglo XX puede considerarse como el inicio de "La Era del Plástico", ya que en esta época la obtención y comercialización de los plásticos sintéticos ha sido continuamente incrementada y el registro de patente se presenta en número creciente. La consecución de plásticos sintéticos se originó de la Química Orgánica que se encontraba entonces en pleno auge.

En 1907 salió al mercado la resina fenólica "Baquelita", mientras Staundinger trabajaba en la fabricación de poli estireno y Otto Rhom enfocaba sus estudios al acrílico, que para 1930 ya se producían industrialmente.

Por su parte el PVC, aunque había sido sintetizado desde 1872 por Bauman, fue hasta 1920 cuando Waldo Semon, mezclándolo con otros compuestos, obtuvo una masa parecida al caucho, iniciándose así la comercialización del PVC en 1938.

El químico Herman Staundinger, premio Nóbel de 1953 con sus trabajos revolucionarios iniciados en 1920, demostró que muchos productos naturales y todos los plásticos, contienen macromoléculas. Este descubrimiento hizo que se considerara como el "Padre de los Plásticos".
Muchos laboratorios de Universidades y grandes Industrias Químicas concentraron sus esfuerzos en el desarrollo de nuevos plásticos, aprendiendo las técnicas para encausar y dirigir casi la voluntad las reacciones químicas.

Entre los años de 1930 y 1950, debido a la segunda Guerra Mundial surge la necesidad de desarrollar nuevos materiales que cumplan con mejores propiedades, mayor resistencia, menor coste y que sustituyeran a otros que escaseaban. Es en este período, cuando surgieron plásticos como el Nylon, Polietileno de Baja densidad y el Teflón en un sector de gran volumen, y la industria química adquirió de suministrador importante de materiales.

Otro momento exitoso dentro de la historia de los plásticos fue en 1952, cuando K. Ziegler, premio Nóbel en 1964 junto con G. Natta, descubren que el etileno en fase gaseosa resultaba muy lento para reaccionar. Ambos logran su polimerización de manera más rápida por contacto con determinadas substancias catalizadas a presión normal y temperatura baja. Por su parte, G. Natta descubrió en 1954 que estos catalizadores y otros similares daban lugar a las macromoléculas de los plásticos con un lato ordenamiento.

La década de los sesenta se distinguió porque se lograron fabricar algunos plásticos mediante nuevos procesos, aumentando de manera considerable el número de materiales disponibles. Dentro de este grupo destacan las llamadas "resinas reactivas" como: Resinas Epoxi, Poli ésteres Insaturados, y principalmente Poliuretanos, que generalmente se suministran en forma líquida, requiriendo del uso de métodos de transformación especiales.

En los años siguientes, el desarrollo se enfocó a la investigación química sistemática, con atención especial a la modificación de plásticos ya conocidos mediante espumación, cambios de estructura química, copolimerización, mezcla con otros polímeros y con elementos de carga y de refuerzo.
En los años setentas y ochentas se inició la producción de plásticos de altas propiedades como la Polisulfornas, Poliariletercetonas y Polímeros de Cristal Líquido. Algunas investigaciones en este campo siguen abiertas.

Las tendencias actuales van enfocadas al desarrollo de catalizadores para mejorar las propiedades de los materiales y la investigación de las mezclas y aleaciones de polímeros con el fin de combinar las propiedades de los ya existentes.


El nacimiento de los procesos de moldeo de materiales plásticos, se remota a épocas bíblicas con el uso del bitúmen, para la confección de la canasta en la que se puso al patriarca hebreo Moisés en el río Nilo y en el uso de este material en vez de cemento para edificar Babilonia. Al seguir el curso de la historia, se detectan otros usos de resinas naturales como el ámbar en joyería en la antigua roma, la laca como recubrimiento en la India, pelotas de hule natural para juegos rituales en América Central, y otras. En 1839, Charles Goodyear descubrió el proceso de vulcanización del hule con azufre, pero aún no se puede hablar de procesos de moldeos comerciales o industriales.

En 1868 Parkes, en Londres, idea el moldeo de nitrato de celulosa utilizando rodillo, una pequeña cantidad de solvente y calor para plastificar el compuesto. Los intentos para el desarrollo de productos y proceso para moldear continuaron, y en 1872 se patenta la primera máquina de inyección, para moldear nitrato de celulosa, pero debido a la flamabilidad de este material y peligrosidad de trabajar, el proceso no se desarrolló.

Al término del siglo XIX, los únicos materiales plásticos disponibles para usos prácticos eran el Shellac (laca), la Gutta Percha, la Ebonita y el Celuloide, el ámbar y el bitúmen, moldeados en formas artesanales.

En 1926, la expansión de materiales poliméricos y las experiencias en el diseño de máquinas para procesarlos, estimulan la creación de máquinas con aplicación industrial, en la construcción y fabricación en serie de inyectores de émbolo impulsada por la Síntesis del Poli estireno (PS) y Acrílico (PMMA).

En 1935 Paúl Toroester, en Alemania, construye una máquina extrusora de termoplásticos, basada en diseños anteriores para el procesamiento de hules. A Partir de estas fechas inicia el uso de electricidad para el calentamiento, que sustituye al vapor. En Italia se genera el concepto del uso de husillos gemelos. En 1938, se concibe la idea industrial de termo formado, y en 1940 el moldeo por soplado. Otro descubrimiento fundamental en la década de 1930 fue la síntesis del nylon, el primer plástico de ingeniería de alto rendimiento.
Durante la II Guerra Mundial, tanto los aliados como las fuerzas del Eje sufrieron reducciones en sus suministros de materias primas. La industria de los plásticos demostró ser una fuente inagotable de sustitutos aceptables. Alemania, por ejemplo, que perdió sus fuentes naturales de látex, inició un gran programa que llevó al desarrollo de un caucho sintético utilizable. La entrada de Japón en el conflicto mundial cortó los suministros de caucho natural, seda y muchos metales asiáticos a Estados Unidos. La respuesta estadounidense fue la intensificación del desarrollo y la producción de plásticos. El nylon se convirtió en una de las fuentes principales de fibras textiles, los poliésteres se utilizaron en la fabricación de blindajes y otros materiales bélicos, y se produjeron en grandes cantidades varios tipos de caucho sintético.

Durante los años de la posguerra se mantuvo el elevado ritmo de los descubrimientos y desarrollos de la industria de los plásticos. Tuvieron especial interés los avances en plásticos técnicos, como los policarbonatos, los acetatos y las poliamidas. Se utilizaron otros materiales sintéticos en lugar de los metales en componentes para maquinaria, cascos de seguridad, aparatos sometidos a altas temperaturas y muchos otros productos empleados en lugares con condiciones ambientales extremas. En 1953, el químico alemán Karl Ziegler desarrolló el polietileno, y en 1954 el italiano Giulio Natta desarrolló el polipropileno, que son los dos plásticos más utilizados en la actualidad.

La década de los sesenta se distinguió porque se lograron fabricar algunos plásticos mediante nuevos procesos, aumentando de manera considerable el número de materiales disponibles. Dentro de este grupo destacan las llamadas "resinas reactivas" como: Resinas Epoxi, Poliésteres Insaturados, y principalmente Poliuretanos, que generalmente se suministran en forma líquida, requiriendo del uso de métodos de transformación especiales.

En los años siguientes, el desarrollo se enfocó a la investigación química sistemática, con atención especial a la modificación de plásticos ya conocidos mediante espumación, cambios de estructura química, copolimerización, mezcla con otros polímeros y con elementos de carga y de refuerzo.
En los años setentas y ochentas se inició la producción de plásticos de altas propiedades como la Polisulfornas, Poliariletercetonas y Polímeros de Cristal Líquido. Algunas investigaciones en este campo siguen abiertas.

APLICACIONES POSTERIORES A 1990


Los plásticos tienen cada vez más aplicaciones en los sectores industriales y de consumo. Algunas de ellas se mencionan a continuación:

Empaquetado

Una de las aplicaciones principales del plástico es el empaquetado. Se comercializa una buena cantidad de LDPE (polietileno de baja densidad) en forma de rollos de plástico transparente para envoltorios. El polietileno de alta densidad (HDPE) se usa para películas plásticas más gruesas, como la que se emplea en las bolsas de basura. Se utiliza también en el empaquetado el polipropileno: buena barrera contra el vapor de agua; tiene aplicaciones domésticas y se emplea en forma de fibra para fabricar alfombras y sogas.

Construcción

La construcción es otro de los sectores que más utilizan todo tipo de plásticos, incluidos los de empaquetados descritos anteriormente. El HDPE se usa en tuberías, del mismo modo que el PVC. Éste se emplea también en forma de lámina como material de construcción. Muchos plásticos se utilizan para aislar cables e hilos, y el poliestireno aplicado en forma de espuma sirve para aislar paredes y techos. También se hacen con plástico marcos para puertas, ventanas y techos, molduras y otros artículos.

Otras Aplicaciones

Otros sectores industriales, en especial la fabricación de motores, dependen también de estas sustancias. Algunos plásticos muy resistentes se utilizan para fabricar piezas de motores, como colectores de toma de aire, tubos de combustible, botes de emisión, bombas de combustible y aparatos electrónicos. Muchas carrocerías de automóviles están hechas con plástico reforzado con fibra de vidrio.

Los plásticos se emplean también para fabricar carcasas para equipos de oficina, dispositivos electrónicos, accesorios pequeños y herramientas. Entre las aplicaciones del plástico en productos de consumo se encuentran los juguetes, las maletas y artículos deportivos.


MATERIAS PRIMAS PARA LA PRODUCCIÓN DE MATERIALES SINTÉTICOS


Existen dos tipos de materias primas para la obtención de los materiales sintéticos que son:

-Las materias primas naturales, que se obtienen directamente de la naturaleza.


-Las materias primas sintéticas, que se elaboras a partir de las naturales, como por ejemplo el petróleo o el carbón.

Los materiales sintéticos están formados por moléculas gigantes (macromoléculas). Estas moléculas se forman por reacciones en las que se unen muchas unidades de otras moléculas pequeñas (monómeros ) formando largas cadenas (polímeros.). Estar reacciones se llaman de polimerización.


monómero
monómeros
polimerización
reacción
polímero
polímero

Según su origen pueden ser:

Polímeros naturales: provenientes directamente del reino vegetal o animal. Por ejemplo: celulosa, almidón, proteínas, caucho natural, ácidos nucleicos, etc.

Polímeros artificiales: son el resultado de modificaciones mediante procesos químicos, de ciertos polímeros naturales. Ejemplo: nitrocelulosa, etonita, etc.


Polímeros sintéticos: son los que se obtienen por procesos de polimerización controlados por el hombre a partir de materias primas de bajo peso molecular. Ejemplo: nylon, polietileno, cloruro de polivinilo, polimetano, etc.


En un principio, la mayoría de los plásticos se fabricaban con resinas de origen vegetal, como la celulosa (del algodón), el furfural (de la cáscara de la avena), aceites (de semillas), derivados del almidón o el carbón. La caseína de la leche era uno de los materiales no vegetales utilizados.
A pesar de que la producción del nylon se basaba originalmente en el carbón, el aire y el agua, y de que el nylon 11 se fabrique todavía con semillas de ricino, la mayoría de los plásticos se elaboran hoy con derivados del petróleo.
Las materias primas derivadas del petróleo son tan baratas como abundantes. No obstante, dado que las existencias mundiales de petróleo tienen un límite, se están investigando otras fuentes de materias primas, como la gasificación del carbón.





Y con esto concluye la entrada de hoy, espero que os haya sido de ayuda para introduciros un poco en el mundo de los materiales sintéticos y que ahora tengáis una idea general de lo que son y ss diferentes usos.
Un saludo y como siempre la próxima semana más, pero no mejor porque es imposible ;)

























No hay comentarios:

Publicar un comentario